The optically detected coherent lattice oscillations in silver and gold monolayer periodic nanoprism arrays: the effect of interparticle coupling.
نویسندگان
چکیده
Using femtosecond transient spectroscopy, we studied the optically detected laser-induced coherent phonon oscillation of monolayers of periodic arrays of prismatic-shaped silver and gold nanoparticles, assembled by using the technique of nanosphere lithography. In this method, the same size of polystyrene sphere and the same vacuum conditions are used. Under these circumstances, the gold nanoprisms formed are found to have sharper tips than the corresponding silver nanoprisms. For both gold and silver nanoparticles, the surface plasmon absorption maximum is found to depend linearly on size. The coherent lattice oscillation periods are also found to depend linearly on size. However, although the observed dependence for the silver nanoparticle is found to follow the calculated dependence of a single particle on size (based on a one-dimensional standing wave model), the gold nanoparticle deviates from this model, and the deviation is found to increase with the size of the nanoparticles. This deviation can be explained by considering interparticle coupling. A simple interparticle lattice oscillating dipolar coupling model of the dimer is found to qualitatively account for both the sign and the size dependence of the deviation. The absence of this deviation in the silver nanoparticle arrays is blamed on the weak interparticle coupling due to their rounded tips and the possibility of oxidation of their surfaces.
منابع مشابه
The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs.
By using electron beam lithography, we fabricated pairs of gold nanoparticles with varying interparticle separation. Double-beam femtosecond transient absorption spectroscopy was used to determine the coherent lattice oscillation frequency as a function of the interparticle separation in the presence of the plasmon field excited by the monitoring probe light. We found that the fractional shift ...
متن کاملFabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy.
This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-sh...
متن کاملCoherent Vibrational Oscillation in Gold Prismatic Monolayer Periodic Nanoparticle Arrays
We studied the ultrafast laser-induced coherent phonon oscillation in prismatic shaped gold nanoparticles assembled in monolayer periodic arrays by using the nanosphere lithographic technique. The amplitude and phase of the oscillation observed by ultrafast pump−probe transient spectroscopy is monitored as the wavelength of the dipolar surface plasmon absorption decreases. At a certain waveleng...
متن کاملLaser-excited acoustic oscillations in silver and bismuth nanowires
Coherent acoustic oscillations in Bi and Ag nanowire samples were studied with a femtosecond pump-probe technique and detection of the scattered light. The observed optical and acoustic properties reflect the nanostructure of these materials. The electronic and lattice contributions to the excitation of coherent acoustic phonons are described using a two-temperature model. The excitation is per...
متن کاملFrequency Selective Surfaces with Nanoparticles Unit Cell
The frequency selective surface (FSS) is a periodic structure with filtering performance for optical and microwave signals. The general periodic arrays made with patterned metallic elements can act as an aperture or patch on a substrate. In this work, two kinds of materials were used to produce unit cells with various patterns. Gold nanoparticles of 25 nm diameter were used to form periodic mon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 40 شماره
صفحات -
تاریخ انتشار 2005